Kinematics Simulator on Windows Pc
Developed By: Open Source Physics Singapore
License: Free
Rating: 3,4/5 - 7 votes
Last Updated: April 16, 2024
App Details
Version |
0.0.9 |
Size |
4.5 MB |
Release Date |
June 20, 17 |
Category |
Education Apps |
App Permissions: Allows applications to open network sockets. [see more (1)]
|
What's New: better user interface includes ability to zoom in/out and re centre. [see more]
|
Description from Developer: About an open source physics at Singapore simulation based on codes written by Félix Jesús Garcia Clemente, Francisco Esquembre and Loo Kang WEE.
more simulation are available her... [read more]
|
About this app
On this page you can download Kinematics Simulator and install on Windows PC. Kinematics Simulator is free Education app, developed by Open Source Physics Singapore. Latest version of Kinematics Simulator is 0.0.9, was released on 2017-06-20 (updated on 2024-04-16). Estimated number of the downloads is more than 1,000. Overall rating of Kinematics Simulator is 3,4. Generally most of the top apps on Android Store have rating of 4+. This app had been rated by 7 users, 2 users had rated it 5*, 4 users had rated it 1*.
How to install Kinematics Simulator on Windows?
Instruction on how to install Kinematics Simulator on Windows 10 Windows 11 PC & Laptop
In this post, I am going to show you how to install Kinematics Simulator on Windows PC by using Android App Player such as BlueStacks, LDPlayer, Nox, KOPlayer, ...
Before you start, you will need to download the APK/XAPK installer file, you can find download button on top of this page. Save it to easy-to-find location.
[Note] You can also download older versions of this app on bottom of this page.
Below you will find a detailed step-by-step guide, but I want to give you a fast overview of how it works. All you need is an emulator that will emulate an Android device on your Windows PC and then you can install applications and use it - you see you're playing it on Android, but this runs not on a smartphone or tablet, it runs on a PC.
If this doesn't work on your PC, or you cannot install, comment here and we will help you!
Step By Step Guide To Install Kinematics Simulator using BlueStacks
- Download and Install BlueStacks at: https://www.bluestacks.com. The installation procedure is quite simple. After successful installation, open the Bluestacks emulator. It may take some time to load the Bluestacks app initially. Once it is opened, you should be able to see the Home screen of Bluestacks.
- Open the APK/XAPK file: Double-click the APK/XAPK file to launch BlueStacks and install the application. If your APK/XAPK file doesn't automatically open BlueStacks, right-click on it and select Open with... Browse to the BlueStacks. You can also drag-and-drop the APK/XAPK file onto the BlueStacks home screen
- Once installed, click "Kinematics Simulator" icon on the home screen to start using, it'll work like a charm :D
[Note 1] For better performance and compatibility, choose BlueStacks 5 Nougat 64-bit read more
[Note 2] about Bluetooth: At the moment, support for Bluetooth is not available on BlueStacks. Hence, apps that require control of Bluetooth may not work on BlueStacks.
How to install Kinematics Simulator on Windows PC using NoxPlayer
- Download & Install NoxPlayer at: https://www.bignox.com. The installation is easy to carry out.
- Drag the APK/XAPK file to the NoxPlayer interface and drop it to install
- The installation process will take place quickly. After successful installation, you can find "Kinematics Simulator" on the home screen of NoxPlayer, just click to open it.
Discussion
(*) is required
About
an open source physics at Singapore simulation based on codes written by Félix Jesús Garcia Clemente, Francisco Esquembre and Loo Kang WEE.
more simulation are available here
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics
Introduction
Topics
Kinematics
Speed, velocity and acceleration
Graphical analysis of motion
Description
This simulation has a drop-down menu for exploration of
(i) at rest use of progressive mathematical model is encouraged X = 0 for example
(ii) moving with uniform velocity, use of progressive mathematical model is encouraged for example X = 1*t for a constant velocity motion of v =1 m/s
(iii) moving with non-uniform velocity (eg, constant acceleration) use of progressive mathematical model is encouraged for example X = 0.5*1*t^2 for a constant acceleration motion of a =1 m/s^2
When only the velocity-time graph check-box is selected, it can be explored for the following cases too.
(i) at rest ,
(ii) moving with uniform velocity (eg, no acceleration)
(iii) moving with uniform acceleration (eg, constant acceleration = 9.81 m/s^2)
(iv) moving with non-uniform acceleration
Sample Learning Goals
(e) plot and interpret a displacement-time graph and a velocity-time graph
(f) deduce from the shape of a displacement-time graph when a body is:
(i) at rest example of progressive mathematical model is encouraged X = 0
(ii) moving with uniform velocity example of progressive mathematical model is encouraged X = 1*tf or a constant velocity motion of v =1 m/s
(iii) moving with non-uniform velocity example of X = 0.5*1*t^2 for a constant acceleration motion of a =1 m/s^2
(g) deduce from the shape of a velocity-time graph when a body is:
(i) at rest
(ii) moving with uniform velocity
(iii) moving with uniform acceleration
(iv) moving with non-uniform acceleration
Interesting Fact 1
Mystery could take the form of to describe it in an equation, called model.
Give the challenge to solve the mystery of a predictive equation that can be use to tell the future, more precisely the movement of a car, in a physics lesson.
Through the model selected by the students, it gives an indication of the students prior knowledge about what they know now, so that the teacher can understand the gaps of understanding for personalised mentoring
Interesting Fact 2
This app is produce real numbers to coincident with the real world data of gravity pull at 9.81 m/s^2 with some random errors simulating real data-logger results. There is a mathematical modelling pedagogy built into the simulation for students to make effort to represent the physics similar to Tracker's particle modeling.
Acknowledgement
My sincere gratitude for the tireless contributions of Francisco Esquembre, Fu-Kwun Hwang, Wolfgang Christian, Félix Jesús Garcia Clemente, Anne Cox, Andrew Duffy, Todd Timberlake and many more in the Open Source Physics community. I have designed much of the above based on their ideas and insights, and I thank the OSP community for which Singapore was honored with 2015-6 UNESCO King Hamad Bin Isa Al-Khalifa Prize for the Use of ICTs in Education.
Network Learn together?
FaceBook Fan Page: https://www.facebook.com/Open-Source-Physics-Easy-Java-Simulation-Tracker-132622246810575/
Twitter: https://twitter.com/lookang
YouTube: https://www.youtube.com/user/lookang/videos
Blog: http://weelookang.blogspot.sg/
Digital Library: http://iwant2study.org/ospsg/
better user interface includes ability to zoom in/out and re centre.
Allows applications to open network sockets.